THE LATE MIOCENE LARGE MAMMAL FAUNA FROM
THE NAMURUNGULE FORMATION, SAMBURU HILLS,
NORTHERN KENYA

Hideo NAKAYA
Faculty of Science, Kyoto University

Martin PICKFORD
National Museums of Kenya

Yoshihiko NAKANO
Hidemi ISHIDA
Faculty of Human Sciences, Osaka University

ABSTRACT By the Japan-Kenya Expedition, more than 1145 late Miocene vertebrate fossils were collected from the Namurungule Formation in Samburu Hills, Northern Kenya in 1982.

These fossils are assigned to at least 29 taxa of which 21 are mammals, including Hominoid, Tetralophodon, two kinds of Hipparion, Brachypotherium, Kenyapotamus, and Pachytragus.

Quantitatively, the taxa of Hipparion are the most predominant. But gomphothere, bovid, rhinocerotid and giraffid fossils are approximately as common as each other at Namurungule. Suids, hippopotamids and carnivores seem to be uniformly rare as fossils at Samburu.

In this paper, 19 taxa of mammals are described and discussed briefly.

The Namurungule mammalian fauna is closer in age to Ngorora (c. 11 m.y.) than to Mpesida (7 m.y.) from Kenya, and this fauna is similar to the faunas of Samos and Pikermi (Vallesian).

It seems that the abundance of Hipparion, giraffids, rhinocerotids and bovids suggests a woodland to savannah environment at or near Namurungule during the upper Miocene. We find very little evidence to suggest that there was forest in the vicinity at the time of deposition.

INTRODUCTION

More than 1145 fossil vertebrate fossils were collected from the Namurungule Formation in 1982. These fossils are assigned to at least 29 taxa of which 21 are mammals. Many of the mammalian fossils consist of isolated teeth, footbones or broken long bones, which renders them somewhat difficult to analyse. However, enough is preserved for confident identification of many fragments at the generic level, while a few can be identified to the species level. The list of taxa so far identified is as follows:
62.4% of the fossils collected are aquatic in their ecological affinities, reflecting the predominance of fully lacustrine sedimentary facies exposed in the Namurungule Formation. Many of the mammalian fossils were collected from channel deposits cut into shales (e.g. site SH 22) or in fluvial conglomerate/mudstone alternations deposited near the edge of the basin (e.g. locs. SH 11, 12, 13). Many fish, turtle and crocodile fossils were left in the field, so these figures also reflect a marked collecting bias towards mammalian fossils, which even so, comprised only 37.6% of the fossil remains collected in 1982.

Twenty one taxa of mammals have been recognised in the Namurungule Formation. Of these, nineteen are described in this report, while Rodentia and Hominoidea are the subject of separate reports. The authors were careful not to assign specific names to many of the taxa. This reflects three factors, a) the fragmentary nature of many of the fossils, b) the hope that future collections will result in better samples which may allow more confident identifications and c) the novelty of the fauna compared with other described East African fossil faunas.
Faunas from sites at different levels at Namurungule are essentially similar, and we consider it likely that the Namurungule Formation as a whole is yielding a fauna of restricted biostratigraphic range.

Sub-Saharan post-\textit{Hipparion} faunas between 10.5 and 7 m.y. are very poorly known. In Kenya the sites of Ngeringerowa and Nakali have yielded fossils from this time period (Pickford 1981), but little has been formally described. Consequently, comparisons must be made with well known faunas from Eurasia, a factor which introduces uncertainty in analysis due to the tremendous geographic distances between the various sites.

Comparisons of the Namurungule mammalian fauna with older and younger faunas from Kenya indicate that the strata are probably closer in age to Ngorora (c. 11 m.y.) than to Mpesida (7 m.y.). (Bishop \textit{et al.}, 1971; Pickford, this vol.). Comparisons with European faunas reveal several similarities at the generic level, with the faunas of Samos and Pikermi (Gentry, 1971). The Beglia fauna of Tunisia (Robinson, 1972) also yields a similar fauna. The Namurungule strata are thus broadly equivalent in age to Vallesian deposits of Europe.

The predominance of \textit{Hipparion} fossils in the Samburu Hills mammal collection probably indicates two things. Firstly, \textit{Hipparion} fossils are robust and seem to survive taphonomic processes from death to collection better than many other mammals. Secondly, \textit{Hipparion} may have comprised a significant proportion of the large mammal population at the time of deposition of the strata. Gomphothere, bovid, rhinocerotid and giraffid fossils are approximately as common as each other at Namurungule. Suids, hippopotamids, and carnivores seem to be uniformly rare as fossils at Samburu.

The evidence is not clearcut, but it seems that the abundance of \textit{Hipparion}, giraffids, rhinocerotids and bovids suggests a woodland to savannah environment at or near Namurungule during the upper Miocene. We find very little evidence to suggest that there was forest in the vicinity at the time of deposition.

The locality data, and geological and biostratigraphic context information are provided in separate reports published in this volume.
SYSTEMATIC DESCRIPTIONS

CLASS MAMMALIA
ORDER CARNIVORA
SUBORDER FISSIPEDA
Family Hyaenidae Gray, 1969
Genus Percrocuta Kretzoi, 1938

Percrocuta sp.

(Plate 1, fig. 1, 2)

Material Fragment of right mandible with lower M₁ (KNM-SH 12408).
Locality Samburu Hills (SH 34).
Horizon Upper alternation, Namurungule Formation.

Description and Discussion

The tooth in the mandible is a worn carnassial. The occlusal surface of the tooth is heart shaped in occlusal view. The crown of the tooth is concave to the labial side, and the distal accessory cusp is small. There is no metaconid on the lingual side of the crown.

Measurements of the tooth are as follows: (mm)
Length of crown ca. 26.5 (Reconstructed)
Breadth of crown 14.7
Height of crown 15.0
Height of mandible 37.7 +

Material identified as Carnivora is represented by mandibles and lower teeth which undoubtedly belong to the family Hyaenidae judging from the cusp pattern of the cheek teeth.

Hyaenidae is divisible into two major groups termed the Percrocuta and Hyaena groups (Hendey, 1978). The body size of the Percrocuta group is larger than that of the Hyaena group.

The size of the carnassial tooth KNM-SH 12408 suggests that it belongs to the Percrocuta group. This inference is supported by the fact that the tooth has no metaconid.

The Namurungule lower carnassial assigned to Percrocuta is larger than that of P. tobieni Crusafont and Aguirre (1971).

Genus Ictitherium Wagner, 1848

Ictitherium sp.

(Plate 1, fig. 3, 4)
Material Fragment of left mandible with P₂ – M₁ (KNM-SH 12406).
Locality Samburu Hills (SH 38).
Horizon Upper alternation, Namurungule Formation.

Description and Discussion

In KNM SH 12406, the P₂ and M₁ are broken while P₃ – P₄ are complete. The teeth are slender and narrow. P₃ and P₄ have accessory cusps anteriorly and posteriorly. P₄ has a distal cingulum. M₁ is a carnassial. There are two mental foramina below P₂ and P₃. There are no diastemata between the cheek teeth.

Measurements of the teeth are as follows: (mm)

<table>
<thead>
<tr>
<th></th>
<th>P₂</th>
<th>P₃</th>
<th>P₄</th>
<th>M₁</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length of crown</td>
<td>11.0</td>
<td>12.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breadth of crown</td>
<td>4.3</td>
<td>5.5</td>
<td>6.3</td>
<td>6.0</td>
</tr>
<tr>
<td>Height of crown</td>
<td>4.1</td>
<td>8.2</td>
<td>9.0</td>
<td>7.1</td>
</tr>
<tr>
<td>Height of mandible</td>
<td>18.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P₂ – P₃)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(P₄ – M₁)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The size of the cheek teeth of KNM-SH 12406 suggest that it belongs to the *Hyaena* as opposed to the *Percrocuta* group. The teeth are narrower than those usually seen in *Percrocuta* and the premolars possess accessory anterior and posterior cusps (Schmidt-Kittler, 1976). If the identification of this mandible as *Ictitherium* is correct, then this report provides the first record of the genus from Sub-Saharan Africa.

Hyaenidae, gen. et. sp. indet.

(Plate 1, fig. 5, 6)

Material Fragment of right mandible with roots of C, P₁ and P₂ (KNM-SH 12407).
Locality Samburu Hills (SH 25).
Horizon Upper alternation, Namurungule Formation.

Description and Discussion

Among the carnivore fossils from Samburu is an edentulous anterior mandible fragment which we consider to represent a hyaenid. There is a big mental foramen below P₂. The cross section of the canine is oval and the symphysis of the mandible is long and curved. The specimen evidently represents a hyaenid, possibly compatible in size with the *Percrocuta* specimen described above.

Measurements of the specimen are as follows: (mm)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorso-ventral length of canine</td>
<td>26.3</td>
</tr>
<tr>
<td>Transversal breadth of canine</td>
<td>17.8</td>
</tr>
<tr>
<td>Height of mandible below P₁</td>
<td>15.7</td>
</tr>
<tr>
<td>Height of mandible below P₂</td>
<td>20.1</td>
</tr>
</tbody>
</table>
ORDER PROBOSCIDEA
SUBORDER GOMPHOTHERIOIDEA
Family Gomphotheriidae Hay, 1922
Genus *Tetralophodon* Falconer et Cautley, 1857

Tetralophodon sp.

(Plate 2, fig. 1-8, Plate 3, fig. 1-8, Plate 4, fig. 1-5)

Material
Left and right upper M² (KNM-SH 12307), left upper M¹ (KNM-SH 12308), right upper M¹ (KNM-SH 12309), left upper P⁴ (KNM-SH 12310), right upper P⁴ (KNM-SH 12311), right upper P³ (KNM-SH 12312), right lower P² (KNM-SH 12313), fragment of the left mandible with lower M₂ (KNM-SH 12373), right lower M₂ (KNM-SH 12380).

Locality
Samburu Hills (All specimens from SH 42 except 12373 and 12380 from loc. SH 33).

Horizon
Upper alternation, Namurungule Formation.

Description and Discussion

Specimens KNM-SH 12307–12313 represent one young individual. The cheek teeth are bunodont. The number of lophs in the intermediate molars (P⁴–M²) is four (tetralophodont). No cementum is preserved on the crowns, the enamel of which is thick. The hypocone has conules anteriorly and posteriorly which impart, in intermediate molars, a trefoil shape to the hypocone when viewed occlusally. The teeth (KNM-SH 12373 and 12380) belong to one adult individual. The symphysis of the mandible is long (longirostrine), and has an incisor alveolus (tetrabelodont).

Measurement of the crowns of the teeth are as follows: (mm)

<table>
<thead>
<tr>
<th></th>
<th>KNM-SH</th>
<th>Length</th>
<th>Breadth</th>
<th>Height</th>
<th>Thickness of enamel</th>
<th>LF</th>
<th>LF = lamellar frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left M¹</td>
<td>(12307)</td>
<td>148.4</td>
<td>81.1</td>
<td>58.0+</td>
<td>—</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Right M¹</td>
<td>(12307)</td>
<td>147.3</td>
<td>83.8</td>
<td>50.0+</td>
<td>—</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Left P⁴</td>
<td>(12308)</td>
<td>106.3</td>
<td>61.8</td>
<td>47.5</td>
<td>4.2</td>
<td>3.8</td>
<td></td>
</tr>
<tr>
<td>Right P⁴</td>
<td>(12309)</td>
<td>81.5+</td>
<td>62.2</td>
<td>36.5+</td>
<td>3.6</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>Left P³</td>
<td>(12310)</td>
<td>56.3</td>
<td>48.9</td>
<td>28.1</td>
<td>3.3</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>Right P³</td>
<td>(12311)</td>
<td>56.1</td>
<td>48.5</td>
<td>26.5</td>
<td>2.8</td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>Right P²</td>
<td>(12312)</td>
<td>37.3</td>
<td>36.7</td>
<td>10.9</td>
<td>3.3</td>
<td>5.3</td>
<td></td>
</tr>
<tr>
<td>Right P₁</td>
<td>(12313)</td>
<td>32.7</td>
<td>24.0+</td>
<td>17.3</td>
<td>2.5</td>
<td>6.1</td>
<td></td>
</tr>
<tr>
<td>Left M₂</td>
<td>(12373)</td>
<td>176.0</td>
<td>91.4</td>
<td>34.5</td>
<td>10.9</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>Right M₂</td>
<td>(12380)</td>
<td>118.1+</td>
<td>92.1</td>
<td>35.0</td>
<td>9.6</td>
<td>—</td>
<td></td>
</tr>
</tbody>
</table>
Late Miocene large mammal fauna

The Samburu Hills gomphotheres are tetralophodont, longirostrine and probably tetrabelodont, (Tobien, 1973) particularly if the two individuals belong to the same species. The teeth appear to have no cementum, the molars are bunodont, the number of cones is low (4–6) the lamellar frequency ranges from 2.3 to 3.8, the talons and talonids are relatively simple; upper and lower tusks are circular in section, the intermediate molars have a secondary trefoil, the symphysis curves strongly downwards, and the molar enamel is thick (9.6–10.6 mm in M2).

This combination of characters permits us to reject any assignment of these specimens to the genera Palaeomastodon, Gomphotherium, Playbelodon, Choerolophodon, Anancus, Stegodibelon or Primelephas. Two genera of gomphotheres Tetralophodon and Stegotetrabelodon possess a number of these features listed above. Of these two, the Samburu Hills specimens are closest in overall morphology and size to Tetralophodon. Material assigned to Stegotetrabelodon does not permit many direct comparisons with the Samburu Hills specimens to be made. The little evidence available, including the loph number of intermediate molars, suggests that the Samburu specimens do not represent Stegotetrabelodon but are most likely to belong to Tetralophodon (see Alberdi, 1971). In view of the fact that the skull of specimens SH 12373 and 12380 is still in situ and will be collected next field season, it is best to await the recovery of additional specimens before attempting a specific identification.

SUBORDER DEINOTHERIOIDEA
Family Deinotheriidae Bonaparte, 1845
Genus Prodeinotherium Ehik, 1930

Prodeinotherium sp.

(Plate 5, fig. 1, 2)

Material Left lower M1 (KNM-SH 12304-C), left lower M2 (KNM-SH 12304-A), left lower M2 (KNM-SH 12304-B), right lower M2 or 3 (KNM-SH 12305-B), left lower M2 (KNM-SH 12305-A), left upper M2 or 3 (KNM-SH 12306).

Locality Samburu Hills (12304 is from SH 40, 12305 is from SH 20 and 12306 is from SH 26).

Horizon Lower alternation and upper alternation, Namurungule Formation.

Description and Discussion

The cheek teeth (M2 and M3) are bilophodont, typical of the family Deinotheriidae. Two genera of deinotheres Prodeinotherium and Deinotherium are currently recognised in Africa (Harris, 1973). Prodeinotherium is generally considered to be smaller than Deinotherium, and possesses a number of primitive characters in the skull. Differences in the dentition are present but are generally of a minor nature, which renders specific identification of isolated teeth a matter of some uncertainty. The size of the cheek teeth does not always permit specific or even generic identifications to be made, since large specimens of Prodeinotherium are larger than small specimens of Deinotherium. The Samburu specimens fall into the size overlap range of the two genera.
The identification of this material as *Prodeinotherium* is based mainly on the presence, in the cheek teeth, of reduced posterior cingula (Harris, 1973). If this identification proves to be correct, then the Samburu deinotheres would represent a large species of *Prodeinotherium*. We feel that the recovery of skull or skeletal material is necessary before a definite identification can be made.

Measurements of the crowns of the teeth are as follows: (mm)

<table>
<thead>
<tr>
<th>KNM-SH</th>
<th>Length</th>
<th>Breadth</th>
<th>Height</th>
<th>Thickness of enamel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left M1</td>
<td>(12304-C)</td>
<td>57.0+</td>
<td>–</td>
<td>30.5+</td>
</tr>
<tr>
<td>Left M2</td>
<td>(12304-A)</td>
<td>71.9</td>
<td>62.1</td>
<td>38.1</td>
</tr>
<tr>
<td>Left M2</td>
<td>(12304-B)</td>
<td>74.6</td>
<td>68.5</td>
<td>39.2</td>
</tr>
<tr>
<td>Left M2</td>
<td>(12305-A)</td>
<td>–</td>
<td>66.3</td>
<td>35.0</td>
</tr>
<tr>
<td>Right M2 or 3</td>
<td>(12305-B)</td>
<td>–</td>
<td>–</td>
<td>33.5</td>
</tr>
<tr>
<td>Left M2 or 3</td>
<td>(12306)</td>
<td>–</td>
<td>–</td>
<td>41.0+</td>
</tr>
</tbody>
</table>

ORDER PERISSODACTYLA
SUBORDER HIPPMORPHA
Family Equidae Gray, 1921
Genus *Hipparion* de Christol, 1821

Hipparion primigenium (von Meyer), 1829

(Plate 5, fig. 3-15, Plate 6, fig. 1-4)

Material
Right upper dP² (KNM-SH 12248, loc. SH 22), left upper P³ (KNM-SH 12244 loc. SH 12), right upper P³ (KNM-SH 12255 loc. SH 15), left upper P³ or 4 (KNM-SH 12205 loc. SH 11), right upper P³ or 4 (KNM-SH 12240 loc. SH 14), left upper P³ or 4 (KNM-SH 12245 loc. SH 9), right upper P³ or 4 (KNM-SH 12256 loc. SH 9), left upper P³ or 4 (KNM-SH 12258 loc. SH 12), left upper P⁴ (KNM-SH 12202 loc. SH 25), right upper P⁴ (KNM-SH 12204 loc. SH 25), right upper P⁴ (KNM-SH 12257 loc. SH 9) left upper P⁴ (KNM-SH 12271 loc. SH 11), right upper M¹ (KNM-SH 12239 loc. SH 5), left upper M¹ (KNM-SH 12241 loc. SH 16), left upper M² (KNM-SH 12242 loc. SH 9), left upper M² (KNM-SH 12246 loc. SH 21), left upper M³ (KNM-SH 12243 loc. SH 41), left upper M³ (KNM-SH 12247 loc. SH 12), fragment of the frontal (KNM-SH 12276 loc. SH 19), right mandible with lower P₂ (KNM-SH 12201 loc. SH 15), right mandible with lower P₂ and P₃ (KNM-SH 12269 loc. SH 12), right lower P₂ (KNM-SH 12264 loc. SH 11), left lower P₃ (KNM-SH 12249 loc. SH 25), left lower P₃ (KNM-SH 12250 loc. 12), right lower P₃ (KNM-SH 12253 loc. SH 15), left lower P₄ (KNM-SH 12262 loc. SH 12), left lower P₄ (KNM-SH 12259 loc. SH 25), right
lower P₃ or 4 (KNM-SH 12265 loc. SH 12), left lower M₁ (KNM-SH 12252 loc. SH 16), left lower M₁ (KNM-SH 12261 loc. SH 12), right lower M₂ (KNM-SH 12251 loc. SH 12), left lower M₂ (KNM-SH 12254 loc. SH 15), right lower M₂ (KNM-SH 12263 loc. SH 9), left lower M₂ (KNM-SH 12266 loc. SH 9), left lower M₃ (KNM-SH 12260 loc. SH 13), right lower M₃ (KNM-SH 12267 loc. SH 12), right lower M₃ (KNM-SH 12266 loc. SH 9), left lower M₃ (KNM-SH 12270 loc. SH 14), left talus (KNM-SH 12278 loc. SH 12), proximal and distal end of right 3rd metacarpal (KNM-SH 12272 loc. SH 12), distal end of right 3rd metacarpal (KNM-SH 12274 loc. SH 11), distal end of 3rd basal phalange (KNM-SH 12277 loc. SH 12), proximal end of 3rd middle phalange (KNM-SH 12273 loc. SH 12).

Locality Samburu Hills (see above).
Horizon Lower alternation and upper alternation, Namurungule Formation.

Description

Upper cheek teeth: the cheek teeth are large and relatively hypsodont. The protocone is separated from the main part of the tooth. Various patterns of enamel folding can be seen in the sample. The enamel surrounding the prefossettes and postfossettes of the cheek teeth are characterised by abundant plication.

Lower cheek teeth: the cheek teeth in the collection are large and rarely possess an ectostylid, but commonly have protostyliids and pytchostyliids.

The limb bones are generally large, robust and broad.

Measurements of the specimens are as follows: (mm)

<table>
<thead>
<tr>
<th>KNM-SH</th>
<th>Length of crown</th>
<th>Breadth of crown</th>
<th>Height</th>
<th>Length of the protocone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right dP² (12248)</td>
<td>27.0</td>
<td>19.1</td>
<td>53.5</td>
<td>6.6</td>
</tr>
<tr>
<td>Left P³ (12244)</td>
<td>—</td>
<td>—</td>
<td>44.9</td>
<td>—</td>
</tr>
<tr>
<td>Right P³ (12255)</td>
<td>28.2</td>
<td>28.1</td>
<td>52.9</td>
<td>7.3</td>
</tr>
<tr>
<td>Left P³ or 4 (12205)</td>
<td>27.3</td>
<td>26.3</td>
<td>48.2</td>
<td>8.6</td>
</tr>
<tr>
<td>Right P³ or 4 (12240)</td>
<td>—</td>
<td>24.1+</td>
<td>36.0</td>
<td>6.1</td>
</tr>
<tr>
<td>Left P³ or 4 (12245)</td>
<td>28.2</td>
<td>23.7</td>
<td>49.6</td>
<td>8.6</td>
</tr>
<tr>
<td>Right P³ or 4 (12256)</td>
<td>—</td>
<td>23.0</td>
<td>41.3</td>
<td>7.8</td>
</tr>
<tr>
<td>Left P³ or 4 (12258)</td>
<td>24.3</td>
<td>24.4</td>
<td>26.2</td>
<td>8.7</td>
</tr>
<tr>
<td>Left P⁴ (12202)</td>
<td>25.7</td>
<td>—</td>
<td>51.1</td>
<td>—</td>
</tr>
<tr>
<td>Right P⁴ (12204)</td>
<td>25.9</td>
<td>24.2</td>
<td>58.0</td>
<td>9.2</td>
</tr>
<tr>
<td>Right P⁴ (12257)</td>
<td>25.8</td>
<td>23.6+</td>
<td>21.3</td>
<td>9.5</td>
</tr>
<tr>
<td>Left P⁴ (12271)</td>
<td>26.5</td>
<td>23.6</td>
<td>66.7</td>
<td>8.4</td>
</tr>
<tr>
<td>Right M¹ (12239)</td>
<td>—</td>
<td>—</td>
<td>33.7</td>
<td>—</td>
</tr>
<tr>
<td>Left M¹ (12241)</td>
<td>—</td>
<td>—</td>
<td>52.3</td>
<td>—</td>
</tr>
<tr>
<td>Left M² (12242)</td>
<td>25.0</td>
<td>22.1</td>
<td>47.8</td>
<td>7.7</td>
</tr>
<tr>
<td>Left M² (12246)</td>
<td>23.0</td>
<td>22.4</td>
<td>37.7</td>
<td>7.6</td>
</tr>
<tr>
<td>Left M³ (12243)</td>
<td>23.2</td>
<td>21.3</td>
<td>51.6</td>
<td>9.1</td>
</tr>
<tr>
<td>Left M³ (12247)</td>
<td>26.1</td>
<td>20.5</td>
<td>42.7</td>
<td>9.0</td>
</tr>
</tbody>
</table>
The dental dimensions of *Hipparion* molars from the Samburu Hills fall into two groups. The larger of these is closely comparable to samples collected from Nakali (Aguirre and Alberdi, 1974) (see accompanying table) and identified by them as *H. africanum*.
Hipparion sitzfense Pomel, 1897

(Plate 6, fig. 5–12)

Material

<table>
<thead>
<tr>
<th>KNM-SH</th>
<th>Length of crown</th>
<th>Breadth of crown</th>
<th>Height</th>
<th>Length of the protocone</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right M^2 (12284)</td>
<td>19.9+</td>
<td>17.9+</td>
<td>31.3</td>
<td>6.5</td>
</tr>
<tr>
<td>Left M^1 or M^2 (12286)</td>
<td>20.9+</td>
<td>18.0+</td>
<td>34.3</td>
<td>6.7</td>
</tr>
<tr>
<td>Right M^1 or M^2 (12302)</td>
<td>19.5+</td>
<td>20.6</td>
<td>12.5</td>
<td>7.7</td>
</tr>
<tr>
<td>Right M^1 or M^2 (12790)</td>
<td>22.3+</td>
<td>17.1+</td>
<td>15.8</td>
<td>7.6</td>
</tr>
<tr>
<td>Right M^3 (12291)</td>
<td>20.9+</td>
<td>17.8+</td>
<td>35.8</td>
<td>5.4</td>
</tr>
</tbody>
</table>

Locality

Samburu Hills (see above).

Horizon

Lower alternation and upper alternation, Namurungule Formation.

Description and Discussion

Upper cheek teeth: the cheek teeth are small. The enamel surrounding the prefossettes and postfossettes of the cheek tooth are characterised by limited plication, but in other characteristics the teeth are similar to those of *H. primigenium*.

Lower cheek teeth: the cheek teeth are small, and have no ectostylid and no ptychostylid. Protostylids are very common in the sample under study.

The limb bones are slender and long.
Metric Comparison of Hipparion teeth from Nakali and Samburu Hills

The equid material so far collected at Samburu reveals that at least two taxa are present in the deposits. These are characterised by differences in size, limb proportions and dental features outlined above. The collection, though containing more than 170 specimens of which 79 are mentioned above, does not have any specimens complete enough to permit us to obtain a convincing idea of the affinities of the taxa. We are therefore obliged to use traditional nomenclature, and identify the large species as *H. primigenium* and the smaller one as *H. sitifense*. However, in the absence of skulls we cannot rule out the possibility that the large Samburu *Hipparion* may represent *H. turkanense* Hooijer and Maglio (1974).
Late Miocene large mammal fauna

<table>
<thead>
<tr>
<th></th>
<th>Nakali sample</th>
<th>Samburu Hills</th>
<th>Samburu Hills</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H. africanum</td>
<td>H. primigenium</td>
<td>H. sitifense</td>
</tr>
<tr>
<td>from Aguirre and Alberdi, 1974</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3 and/or 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Length)</td>
<td>27.5 - 28.4</td>
<td>24.3 - 28.2</td>
<td></td>
</tr>
<tr>
<td>(Breadth)</td>
<td>26.0 - 27.5</td>
<td>23.0 - 28.1</td>
<td></td>
</tr>
<tr>
<td>M1 and/or 2</td>
<td></td>
<td></td>
<td>19.5+ - 23.3+</td>
</tr>
<tr>
<td>(Length)</td>
<td>26.9 - 29.7</td>
<td>23.0 - 25.0</td>
<td>17.1+ - 20.6</td>
</tr>
<tr>
<td>(Breadth)</td>
<td>24.5</td>
<td>22.1 - 22.4</td>
<td></td>
</tr>
<tr>
<td>P2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Length)</td>
<td>29.4 - 31.5</td>
<td>32.8 - 35.9</td>
<td></td>
</tr>
<tr>
<td>(Breadth)</td>
<td>14.0</td>
<td>13.1 - 16.5</td>
<td></td>
</tr>
<tr>
<td>P3 and/or 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Length)</td>
<td>26.7 - 29.1</td>
<td>25.5 - 30.9</td>
<td></td>
</tr>
<tr>
<td>(Breadth)</td>
<td>16.6 - 18.0</td>
<td>12.0+ - 18.2</td>
<td></td>
</tr>
<tr>
<td>M1 and/or 2</td>
<td></td>
<td>21.17 - 22.4</td>
<td></td>
</tr>
<tr>
<td>(Length)</td>
<td>25.0 - 30.0</td>
<td>25.3 - 26.7</td>
<td></td>
</tr>
<tr>
<td>(Breadth)</td>
<td>13.2 - 14.1</td>
<td>12.1 - 15.5</td>
<td>11.4 - 14.2</td>
</tr>
<tr>
<td>M3</td>
<td></td>
<td>25.0</td>
<td></td>
</tr>
<tr>
<td>(Length)</td>
<td>31.5</td>
<td>28.6</td>
<td></td>
</tr>
<tr>
<td>(Breadth)</td>
<td>12.3</td>
<td>11.7 - 11.7</td>
<td>10.1</td>
</tr>
</tbody>
</table>

Family Chalicotheriidae Gill, 1872
Genus cf. Ancylotherium Gaudry, 1862

? Ancylotherium sp. indet.

(Plate 7, fig. 1)

Material Basal phalange (KNM-SH 12138).
Locality Samburu Hills (SH 14).
Horizon Upper alternation, Namurungule Formation.

Description and Discussion

The only specimen of chalicothere in the collection is a lateral proximal phalange of the manus:
Its dorsal proximal articular surface is rounded and overlaps the body of the phalanx both medially and laterally.

Measurements of the phalange are as follows: (mm)
- Greatest length 53.1
- Breadth of the proximal end 32.0
- Breadth of the body 26.1
- Breadth of the distal end 27.3
- Diameter of the proximal end 27.3
- Diameter of the body 25.4
- Diameter of the distal end 19.7
Two subfamilies of chalicothere (Chalicotheriinae and Schizotheriinae) are recognised in Africa (Pickford, 1981). In the lower Miocene Chalicotherium is common (Butler, 1965) while in the Plio-Pleistocene the genus Ancylotherium is widespread but generally rare (Hooijer, 1975). In addition the genus Chemositia Pickford, was found in upper Miocene deposits at Mpesida.

It is clear from its morphology and size that the Samburu specimen does not represent Chemositia. On a basis of its size it is closer to Chalicotherium rusingense than to Ancylotherium hennigi, but morphologically it resembles the latter species in the shape and width of the distal trochlea, the swollen volar part of the shaft proximal to the distal trochlea, and in the degree of overlap of the proximal facet over the shaft. For these reasons we tentatively identify the specimen as Ancylotherium sp. It is appreciably smaller than any phalanges assigned to A. hennigi.

SUBORDER CERATOMORPHA
Family Rhinocerotidae Owen, 1845
Genus Brachypotherium Roger, 1904

Brachypotherium sp.

(Plate 7, fig. 2–5)

Material Left lower P₃ (KNM-SH 12146 loc. SH 22), left lower M₂ (KNM-SH 12143 loc. SH 20), mandibular symphysis (KNM-SH 12174 A loc. SH 25).

Locality Samburu Hills (see above).

Horizon Lower alternation and upper alternation Namurungule Formation.

Description and Discussion

The available material consists of two lower cheek teeth and one edentulous mandible. P₃ (KNM-SH 12146) is heavily worn.

Measurements of the cheek teeth are as follows: (mm)

<table>
<thead>
<tr>
<th>KNM-SH</th>
<th>Length of crown</th>
<th>Breadth of crown</th>
<th>Height of crown</th>
<th>Thickness of enamel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left P₃ (12146)</td>
<td>30.9</td>
<td>22.3</td>
<td>11.6</td>
<td>1.8</td>
</tr>
<tr>
<td>Left M₂ (12143)</td>
<td>50.5</td>
<td>26.5</td>
<td>21.3</td>
<td>2.8</td>
</tr>
</tbody>
</table>

In the lower cheek teeth the external groove is shallow but is more deeply indented than it is in Brachypotherium heinzeli. The buccal cingulum is well developed. The Samburu specimens are comparable in size to corresponding molars of B. heinzeli, and are smaller than those of B. lewisi. In view of the differences in depth of the external groove in molars from Samburu and typical B. heinzeli, and because the sample is small, we prefer to consider the identification of this species as indeterminate until better material is collected.
A mandibular symphysis in the collection (KNM-SH 12174) has two incisors of flattened oval cross section. A second mandible (KNM-SH 12175) is rather different in that it has no incisors, the symphysis is not so robust and not as recurved superiorly. The former we assign to Brachypotherium sp. since it is similar to a specimen from Ngorora (KNM-BN 554) identified as such on a basis of its dentition. KNM-SH 12174 is also similar to a symphyseal mandibular fragment with two incisor roots collected at Nakali (KNM-NA 142).

Rhinocerotidae gen. et sp. indet.

(Plate 8, fig. 1)

Material Left lower molar (KNM-SH 12142 loc. SH 9), edentulous mandible (KNM-SH 12175 loc. SH 7).

Locality Samburu Hills (see above).

Horizon Lower alternation, Namurungule Formation.

Description and Discussion

A partial lower molar of a rhinocerotid in the collection is unusual in that it has large quantities of cementum preserved in the lingual and buccal valleys. The anterior crescentoid has a steeply oriented buccal cingulum on its anterior margin and the crown is moderately hypsodont.

It is possible that this specimen is related to the Ceratotherium lineage, but until better material is found we prefer to treat the tooth as an indeterminate rhinocerotid.

Measurements of the tooth are as follows: (mm)

- Length of crown —
- Breadth of crown 22.4
- Height of crown 42.5
- Thickness of enamel 1.6

Aguirre and Guerin (1974) described an Iranothere from Nakali. They did not mention whether the specimens they studied possessed cementum, but Heissig (1972) described an Iranothere from Pakistan whose molars are heavily invested with cementum. It is possible that the lower molar described here belongs to an Iranotheriine such as Caementodon Heissig, but for the moment we cannot be sure since upper molars, which we don’t have in the collection, would be more diagnostic.

The edentulous mandible (KNM-SH 12175) is relatively complete from M₃ to the anterior edge of the symphysis. There are no incisors, but rather a flattened pad-like area of bone, much as in Paradiceros. There are two large foramina on the inferior surface of the symphysis, and others below the P₂ on the lateral surface of the body. For the moment we are unable to assign this specimen to a genus.
ORDER ARTIODACTYLA
SUBORDER SUIFORMES
Family Suidae Gray, 1821
Genus *Nyanzachoerus* Leakey, 1958

Nyanzachoerus sp.

(Plate 8, fig. 2–5)

Material

Incisor (KNM-SH 12403 loc. SH 13), canine (KNM-SH 12401 loc. SH 25), right upper P^4 (KNM-SH 12419 loc. SH 23), left upper M^2 (KNM-SH 12418 loc. SH 23), upper M^2 or M^3 (KNM-SH 12400 loc. SH 11), lower M_1 (KNM-SH 12402 loc. SH 12), right lower M_2 (KNM-SH 12399 loc. SH 28), right lower M_2 (KNM-SH 12420 loc. SH 28).

Locality

Samburu Hills (see above).

Horizon

Lower alternation and upper alternation, Namurungule Formation.

Description and Discussion

Upper Dentition: The most diagnostic suid specimens in the Samburu collections are an upper P^4 (KNM-SH 12419) and an upper molar (KNM-SH 12418). The P^4 has a single labial cusp the buccal surface of which has a shallow valley running from crown tip to its root. The lingual cusp is as large as the buccal one. Enamel is moderately wrinkled and thick. These features indicate affinities with *Nyanzachoerus*. The molar is comprised of four main cusps and a median accessory cusplet. Enamel wrinkling is moderately complex and the tooth is low-crowned. It probably represents the same taxon as the P^4, in which case the species would be a primitive form of *Nyanzachoerus*, even more primitive than *N. tulotos* Cooke and Ewer (1972). Other teeth in the collection are either not particularly diagnostic or are rather worn. All specimens are however, compatible in size with the P^4 and the upper molar suggesting that only one species of suid is represented at Samburu.

Measurements of the materials are as follows: (mm)

<table>
<thead>
<tr>
<th>Material</th>
<th>KNM-SH</th>
<th>Length of crown</th>
<th>Breadth of crown</th>
<th>Height</th>
<th>Thickness of enamel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right P^4</td>
<td>(12419)</td>
<td>16.1</td>
<td>19.4</td>
<td>13.3</td>
<td>1.6</td>
</tr>
<tr>
<td>Left M^2</td>
<td>(12418)</td>
<td>23.7</td>
<td>20.8</td>
<td>11.0</td>
<td>0.7</td>
</tr>
<tr>
<td>M^2 or M^3</td>
<td>(12400)</td>
<td>21.0+</td>
<td>16.0+</td>
<td>16.5+</td>
<td>1.1</td>
</tr>
<tr>
<td>M_1</td>
<td>(12402)</td>
<td>15.0+</td>
<td>12.0+</td>
<td>8.0</td>
<td>0.7</td>
</tr>
<tr>
<td>Right M_2</td>
<td>(12399)</td>
<td>15.5+</td>
<td>20.0+</td>
<td>10.5+</td>
<td>1.4</td>
</tr>
<tr>
<td>Right M_2</td>
<td>(12420)</td>
<td>11.5+</td>
<td>20.3</td>
<td>10.0</td>
<td>1.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material</th>
<th>KNM-SH</th>
<th>Total length</th>
<th>Breadth</th>
<th>Diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incisor</td>
<td>(12403)</td>
<td>24.3</td>
<td>6.5</td>
<td>6.1</td>
</tr>
<tr>
<td>Canine</td>
<td>(12401)</td>
<td>78.9</td>
<td>22.6</td>
<td>22.5</td>
</tr>
</tbody>
</table>
The degree of molar wrinkling and the index of hypsodonty resembles the few fragments of suid teeth from Nakali, which have yet to be described. They are more primitive than any of the taxa described by Cooke and Ewer, (1972) from Lothagam and Kanapoi.

Family Hippopotamidae Gray, 1821
Genus *Kenyapotamus* Pickford, 1983

Kenyapotamus sp.

(Plate 8, fig. 6–7)

Material

Fragment of tusk (upper canine) (KNM-SH 12430 loc. SH 12), left talus (KNM-SH 12422 loc. SH 24), two middle phalanges (KNM-SH 12429 C, D loc. SH 24).

Locality

Samburu Hills (see above).

Horizon

Lower alternation and upper alternation, Namurungule Formation.

Description and Discussion

A few specimens are assigned to *Kenyapotamus* on the basis of their similarity to material from Ngeringerowa (Pickford, 1983). The tusk fragment is similar in its enamel structure to KNM-BN 1353. The talus from Samburu is closely comparable to KNM-BN 1127.

Hippopotamid remains are scarce in the Samburu Hills, a puzzling feature of the sequence, since lacustrine and lake marginal sedimentary facies are very well represented. In virtually all sediments in Kenya deposited later than 7 m.y., hippopotamids are common. Prior to this they are rare. Pickford (1983) pointed out that sediments younger than 7 m.y. yield the genus *Hippopotamus* while those older than 7 m.y. have so far yielded only *Kenyapotamus*. The few fragments from Samburu cannot be assigned to a species with much confidence, although it is noted that they are comparable in size and morphology to *K. coryndoni*.

Measurements of the materials are as follows: (mm)

<table>
<thead>
<tr>
<th>Material</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left talus (KNM-SH 12422)</td>
<td>49.0+</td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>37.0+</td>
<td></td>
</tr>
<tr>
<td>Height</td>
<td>29.5</td>
<td></td>
</tr>
<tr>
<td>Middle phalanges (KNM-SH 12429)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Greatest length</td>
<td>31.5</td>
<td>31.5</td>
</tr>
<tr>
<td>Breadth of the proximal end</td>
<td>20.0</td>
<td>31.5</td>
</tr>
<tr>
<td>Breadth of the body</td>
<td>15.5</td>
<td>14.5</td>
</tr>
<tr>
<td>Breadth of the distal end</td>
<td>17.5</td>
<td>17.5</td>
</tr>
<tr>
<td>Diameter of the proximal end</td>
<td>16.5</td>
<td>15.0</td>
</tr>
<tr>
<td>Diameter of the body</td>
<td>10.5</td>
<td>9.5</td>
</tr>
<tr>
<td>Diameter of the distal end</td>
<td>12.0</td>
<td>11.0</td>
</tr>
</tbody>
</table>
Material

Left talus (KNM-SH 12370).

Locality

Samburu Hills, loc. SH 4.

Horizon

Upper alternation, Namurungule Formation.

Description and Discussion

Comparison of the slightly rolled talus (SH 12370) with a range of artiodactyl tali indicates that it is most similar to tali of *Dorcatherium songhorensis*, both in morphology and size. The length/width ratio is typical of Tragulidae, and differs from the usually wider tali of pecorans. The youngest known tragulid from Kenya other than this specimen is *Dorcatherium cf. pigotti* from Ngeringerowa. It is conceivable that SH 12370 represents the genus *Dorcatherium*, but we prefer to wait for the recovery of dental evidence before making a generic identification.

The specimen has the following dimensions:

<table>
<thead>
<tr>
<th>Material</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KNM-SH 12370</td>
<td>Talus</td>
</tr>
<tr>
<td>Length</td>
<td>14.5</td>
</tr>
<tr>
<td>Breadth</td>
<td>7.7</td>
</tr>
</tbody>
</table>

Family Giraffidae Gray, 1821

Genus *Palaeotragus* Gaudry, 1821

Palaeotragus sp.

Material

Fragment of left upper molar (KNM-SH 12238 loc. SH 28), left lower P₂ (KNM-SH 12236 loc. SH 22), left lower P₃ (KNM-SH 12232 loc. SH 9), right lower P₄ (KNM-SH 12233 loc. SH 5), right lower P₄ (KNM-SH 12235 loc. SH 5), right lower M₂ (KNM-SH 12234 loc. SH 22), fragment of mandible with left and right lower M₃ (KNM-SH 12229 loc. SH 5).

Locality

Samburu Hills (see above).

Horizon

Lower alternation and upper alternation, Namurungule Formation.
Description and Discussion

The cheek teeth have the kind of rugose enamel typically developed in giraffid teeth. The occlusal shape of the P₄ is trapezoidal. The lower M₂ and M₃ have ectostylids. The teeth are slightly larger than their counterparts in *Palaeotragus primaevus*, but smaller than those of *P. germaini*. The paucity of material prevents a proper assessment of the slight discrepancy in size between the Samburu specimens and *P. primaevus*. Morphologically the two series of fossils appear to be similar, so, until better material is recovered, we assign the specimens to *Palaeotragus*, but leave the specific identification open.

Measurements of the crown of the cheek teeth are as follows: (mm)

<table>
<thead>
<tr>
<th>KNM-SH</th>
<th>Buccal length</th>
<th>Mesial breadth</th>
<th>Distal breadth</th>
<th>Height of crown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left upper molar (12238)</td>
<td>15.0+</td>
<td>—</td>
<td>—</td>
<td>15.0+</td>
</tr>
<tr>
<td>Left P₂ (12236)</td>
<td>20.0+</td>
<td>10.0+</td>
<td>—</td>
<td>19.0</td>
</tr>
<tr>
<td>Left P₃ (12232)</td>
<td>25.2</td>
<td>12.3</td>
<td>15.0</td>
<td>12.5</td>
</tr>
<tr>
<td>Right P₄ (12233)</td>
<td>22.5</td>
<td>14.0</td>
<td>17.6</td>
<td>11.0</td>
</tr>
<tr>
<td>Right M₂ (12235)</td>
<td>24.5</td>
<td>16.2</td>
<td>14.4</td>
<td>17.0</td>
</tr>
<tr>
<td>Left M₃ (12234)</td>
<td>29.0+</td>
<td>—</td>
<td>17.5+</td>
<td>17.5</td>
</tr>
<tr>
<td>Left M₃ (12229)</td>
<td>22.5+</td>
<td>—</td>
<td>16.4+</td>
<td>17.5+</td>
</tr>
<tr>
<td>Right M₃ (12229)</td>
<td>ca. 35.5</td>
<td>17.8</td>
<td>17.8</td>
<td>16.0</td>
</tr>
</tbody>
</table>

Giraffidae gen. et sp. indet. small-type

? *Palaeotragus* sp.

(Plate 9, fig. 1)

Material

The distal part of a left humerus (KNM-SH 12219 loc. SH 14), the distal part of a left radius (KNM-SH 12222 loc. SH 20), right talus (KNM-SH 12214 loc. SH 24), left talus (KNM-SH 12215 loc. SH 12), left talus (KNM-SH 12216 loc. SH 30), right talus (KNM-SH 12217 loc. SH 21), right talus (KNM-SH 12218 loc. SH 20), right navicular-cuboid (KNM-SH 12225 loc. SH 20), proximal end of a left 3rd–4th metatarsal (KNM-SH 12220 loc. SH 26), the proximal end of a right 3rd–4th metatarsal (KNM-SH 12221 loc. SH 20), the distal end of a metapodial (KNM-SH 12223 loc. SH 20).

Locality

Samburu Hills (see above).

Horizon

Lower alternation and upper alternation, Namurungule Formation.

Description and Discussion

A series of fossil giraffid bones from Samburu is comparable in size and morphology with material from Fort Ternan and Ngorora (Hamilton, 1978). The general aspect and size of the specimens leads us to assign the material tentatively to *Palaeotragus* sp.
Measurements of the materials are as follows: (mm)

<table>
<thead>
<tr>
<th>Material</th>
<th>KNM-SH</th>
<th>Greatest height</th>
<th>Greatest breadth</th>
<th>Length of the trochlea</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right talus</td>
<td>(12214)</td>
<td>69.5</td>
<td>42.5+</td>
<td>39.0</td>
</tr>
<tr>
<td>Left talus</td>
<td>(12215)</td>
<td>55.3</td>
<td>36.8</td>
<td>33.5</td>
</tr>
<tr>
<td>Left talus</td>
<td>(12216)</td>
<td>62.4</td>
<td>40.5</td>
<td>38.2</td>
</tr>
<tr>
<td>Right talus</td>
<td>(12217)</td>
<td>60.0</td>
<td>45.3</td>
<td>39.4</td>
</tr>
<tr>
<td>Right talus</td>
<td>(12218)</td>
<td>49.5+</td>
<td>38.0+</td>
<td>33.5</td>
</tr>
</tbody>
</table>

Giraffidae gen. et sp. indet. large-type

? Samotherium sp.

(Plate 9, fig. 2, 3)

Material The proximal part of a scapula (KNM-SH 12156 loc. SH 8), the distal part of a left humerus (KNM-SH 12153 loc. SH 9), the distal part of a right humerus (KNM-SH 12155 loc. SH 22), the distal part of a left humerus (KNM-SH 12158 loc. SH 26), the distal part of a right humerus (KNM-SH 12167 loc. SH 9), the distal part of a right femur (KNM-SH 12151 loc. SH 9), the distal part of a left femur (KNM-SH 12152 loc. SH 8), the proximal part of a femur (KNM-SH 12154 loc. SH 9), the olecranon process of an ulna (KNM-SH 12157 loc. SH 9), the proximal part of a radio-ulna (KNM-SH 12161 loc. SH 22), the distal part of a left radius (KNM-SH 12162 loc. SH 8), the distal part of a right calcaneum (KNM-SH 12165 loc. SH 25), a right talus (KNM-SH 12166 loc. SH 25), a right magnum (KNM-SH 12169 loc. SH 26), a right scaphoid (KNM-SH 12170 loc. SH 21), a right 3rd-4th metatarsal (KNM-SH 12172 loc. SH 39), the distal end of a 3rd-4th metapodial (KNM-SH 12159 loc. SH 26), the distal end of a 3rd-4th metapodial (KNM-SH 12163 loc. SH 30), the distal end of a 3rd-4th metapodial (KNM-SH 12164 loc. SH 16), the proximal part of a phalange (KNM-SH 12168 loc. SH 12).

Locality Samburu Hills (see above).

Horizon Lower alternation and upper alternation, Namurungule Formation.

Description and Discussion

Giraffid fossils are relatively common in the Samburu Hills (46 specimens) and represent two distinct sizes (18 small and 20 large specimens, remainder not assigned). Unfortunately all the dental remains collected belong to a small giraffid. In the absence of identifiable large teeth it is not possible to make a convincing identification of the large postcranial elements. A common feature of publications dealing with Miocene giraffids of Kenya is to assign large giraffid fossils to Samotherium sp. (Hamilton, 1978) despite the fact that no large giraffid teeth have been collected.
In the almost complete absence of cranial evidence, it is not profitable to attempt a more precise identification for the large giraffid limb bones from Samburu. However, it is noted that Aguirre and Leakey (1974) described a fragmentary molar and some postcranial elements from Nakali as *Samotherium*.

Measurements of the materials are as follows: (mm)

Right talus (KNM-SH 12166)
- Greatest height: 101.0
- Greatest breadth: 68.0
- Length of the trochlea: 51.0+

Right 3rd–4th Metatarsal (KNM-SH 12170)
- Greatest length: 421.0
- Breadth of the proximal end: 57.0
- Breadth of the body: 35.0
- Breadth of the distal end: 58.0
- Diameter of the proximal end: 57.0
- Diameter of the body: 40.0
- Diameter of the distal end: 49.5

Family Boidae Gray, 1821
Genus *Miotragocerus* Stramer, 1928

Miotragocerus sp.

(Plate 9, fig. 10)

Material
Fragment of horn core (KNM-SH 12318). Fragment of horn core (KNM-SH 12325) may belong here.

Locality
Samburu Hills (SH 20).

Horizon
Lower alternation and upper alternation, Namurungule Formation.

Description and Discussion

A single damaged right horn core is identified as *Miotragocerus*. It is curved and spiral with an anterior keel. The posterior part of the horn-core possesses a groove which curves upwards longitudinally so that it remains diametrically opposite the anterior keel. The tip and base are missing so it is difficult to orient the specimen. Its measurements are as follows:

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH 12318 Greatest diameter at base of preserved part</td>
<td>44.0</td>
</tr>
<tr>
<td>SH 12318 Least diameter at base</td>
<td>31.9</td>
</tr>
<tr>
<td>SH 12318 Greatest diameter at 100 mm from base</td>
<td>32.5</td>
</tr>
<tr>
<td>SH 12318 Least diameter at 100 mm from base</td>
<td>22.2</td>
</tr>
<tr>
<td>SH 12318 Length of preserved part</td>
<td>182</td>
</tr>
</tbody>
</table>
A second fragment of horn core found nearby may be the tip of the horn of the same individual. It is nearly circular in section with a slightly flattened surface covering one third of the circumference. No dental elements can be assigned to this taxon, nor can postcranial elements, although the latter may be represented in the collection.

Thomas (1979) described *Miotragocerus cyrenaicus* from Sahabi, which in several features except size, is similar to the Samburu Hills specimen. The cross-sectional shape, rate of twisting and curvature, and position of grooves in the horn core seem to be similar in the two specimens. The Samburu Hills specimen is however, about 25% smaller than the Sahabi specimen.

Genus *Pachytragus* Schlosser, 1904

Pachytragus cf. *solignaci* Robinson, 1972

(Plate 9, fig. 4)

Material Fragment of horn core (KNM-SH 12314 loc. SH 26), fragment of horn core (KNM-SH 12315 loc. SH 9), fragment of skull (KNM-SH 12316 loc. SH 20).

Locality Samburu Hills (see above).

Horizon Lower alternation, Namurungule Formation.

Description and Discussion

Two horn cores and a skull fragment resemble specimens of *Pachytragus* described by Robinson (1972). The horn cores are compressed oval in section and curve uniformly but gently backwards towards the tip. There is a minor twist towards the tip but the horn cores are essentially not spiral. The horn core swells above the pedicle which houses a sinus which extends a short distance into it. The back of the horn core is marked by a longitudinal groove which follows the concave curvature of the horn from its base to its tip.

Measurements of the horn cores are as follows:

<table>
<thead>
<tr>
<th></th>
<th>SH 12315</th>
<th>SH 12314</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antero-posterior diameter at base</td>
<td>48.2</td>
<td>c. 48</td>
</tr>
<tr>
<td>Medio-lateral diameter at base</td>
<td>31.6</td>
<td>c. 32</td>
</tr>
<tr>
<td>Antero-posterior diameter at 100 mm from base</td>
<td>c. 35</td>
<td>39.7</td>
</tr>
<tr>
<td>Medio-lateral diameter at 100 mm from base</td>
<td>19.5</td>
<td>21.5</td>
</tr>
<tr>
<td>Length of preserved parts</td>
<td>196</td>
<td>159</td>
</tr>
</tbody>
</table>

The skull fragment, KNM-SH 12316, is part of the left side of the frontal, lacking the horn core, but preserving the orbit, part of the basicranium (the basioccipital has a median groove) and the right auditory bulla. The midline is preserved, as is a supra-orbital foramen on the anterior root of the pedicle. The interfrontal suture is preserved, which shows that the intercornual distance was short (about 13 mm). The horns are situated directly above the orbits and are oriented on the frontal as in *P. solignaci*. The distal parts of the horn core roots are further apart than the anterior parts. No dental elements compatible in size with these horn cores have been found. A number of postcranial elements may belong to this taxon or to the similar sized *Miotragocerus* and *Palaeoeras*.
The Samburu material agrees in nearly all essential details with *Pachytragus solignaci* from Tunisia (Robinson, 1972). Metrically it falls at the lower end of the size range of *P. solignaci*. The material from Samburu seems compatible with a specimen from Ngorora tentatively assigned to this species by Thomas (1981).

Genus *Palaeoreas* Gaudry, 1861

Palaeoreas sp.

(Plate 9, fig. 5)

Material

Fragment of right horn core (KNM-SH 12328 loc. SH 9), fragment of right horn core (KNM-SH 12327 loc. SH 9), fragment of left horn core (KNM-SH 12326 loc. SH 31).

Locality

Samburu Hills (see above).

Horizon

Lower alternation and upper alternation, Namurungule Formation.

Description and Discussion

KNM-SH 12328 can be oriented since it retains part of the frontal. The horn core is nearly circular in section with a sharp posterior keel which curves from the base anticlockwise in the right horn core, the keel ending laterally at the base. A blunter keel starts from the anterior position near the base, spiralling anticlockwise towards the tip in the right horn core, keeping nearly diametrically opposite the rear keel. The horn core is not openly spiral. The specimen is rolled and abraded.

Specimens SH 12327 and 12326 are larger but have the same morphology as SH 12328. These features closely recall the horn core morphology of *Palaeoreas lindermayeri* from Samos (Gentry, 1971).

Measurements of the horn cores are as follows:

<table>
<thead>
<tr>
<th></th>
<th>SH 12328</th>
<th>SH 12327</th>
<th>SH 12326</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antero-posterior diameter at base</td>
<td>26.4</td>
<td>35.0</td>
<td>32.0</td>
</tr>
<tr>
<td>Medio-lateral diameter at base</td>
<td>17.3</td>
<td>25.5</td>
<td>29.0</td>
</tr>
</tbody>
</table>

On the basis of the size of the unweathered specimens, the Samburu Hills specimens are compatible in size with *P. lindermayeri* (see Gentry 1971, Table 3) but without better material we hesitate to assign them to the same species.

Genus *Gazella* Blainville, 1816

Gazella sp.

(Plate 9, fig. 6–8)

Material

Fragment of left mandible with M2 and M3 (KNM-SH 12334 loc. SH
14), fragment of right mandible with M₃ (KNM-SH 12336 loc. SH 12), fragment of left horn core (KNM-SH 12319 loc. SH 25), fragment of left horn core (KNM-SH 12320 loc. SH 16), fragment of right horn core (KNM-SH 12321 loc. SH 12), fragment of left horn core (KNM-SH 12322 loc. SH 12), fragment of horn core (KNM-SH 12323 loc. SH 16), fragment of horn core (KNM-SH 12324 loc. SH 9), fragment of right horn core (KNM-SH 12317 loc. SH 12).

Locality Samburu Hills (see above).

Horizon Lower alternation and upper alternation, Namurungule Formation.

Description and Discussion

Several gazelline fossils, including horn cores and dental elements indicate the presence, in the Samburu deposits, of a species of Gazella slightly larger than G. granti. The horn cores have a flattened lateral surface and an evenly curved medial surface. A subcornual fossa is preserved near the disto-lateral surface of the base of the pedicle in four specimens. In two specimens there is a foramen at the base of the pedicle which connects with the interior surface of the orbit anteriorly. A number of unidentified bovid postcranial elements probably belong to the same species of gazelle as the cranial fragments.

The horn core measurements are as follows:

<table>
<thead>
<tr>
<th></th>
<th>SH 12321</th>
<th>SH 12320</th>
<th>SH 12319</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antero-posterior</td>
<td>30.0</td>
<td>24.4</td>
<td>27.0</td>
</tr>
<tr>
<td>Medio-lateral</td>
<td>19.8</td>
<td>20.2</td>
<td>20.6</td>
</tr>
</tbody>
</table>

Two mandible fragments may represent the same taxon as the gazelline horn cores. KNM-SH 12334 and SH 12336 are left and right mandibles respectively. The former contains a fragment of M₂ and a damaged M₃. The lingual surface of the crown is virtually flat and the crown is narrow. The M₃ in KNM-SH 12336 is less damaged and reveals the presence of a very flat lingual wall and the medio-laterally compressed crown. There are no accessory pillars in the buccal valleys.

Measurements of the teeth are as follows: (mm)

<table>
<thead>
<tr>
<th></th>
<th>Length</th>
<th>Breadth</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNM-SH 12334 M₃</td>
<td>19.1</td>
<td>6.7</td>
</tr>
<tr>
<td>KNM-SH 12336 M₃</td>
<td>19.5</td>
<td>6.5</td>
</tr>
</tbody>
</table>

There are a number of postcranial elements which could belong to gazelles on a basis of their size and morphology. These include metapodials, numbers SH 12342, 12357, 12347, and 12345.

SUMMARY AND CONCLUSIONS

Twenty one mammalian taxa have been recognised from late Miocene deposits exposed in the Samburu Hills, northern Kenya. Because the deposits yield fossils from a time period which is poorly represented in Sub-Saharan Africa, many of the taxa are proving to be new to science. Our analyses are not yet complete, especially since we hope to improve the quality of the samples in subsequent field seasons. For this reason we have erred on the side of caution by not giving specific names to many of the taxa represented in our collections. Because of the paucity of comparative material of similar ages in East Africa, we have had to make comparisons with better
known faunas found north of the Sahara and southern Eurasia. With little doubt, some elements of the Samburu faunas compare reasonably well with faunas from sites such as Beglia, Sahabi, Pikermi and Samos, which indicate correlation with the Vallesian (= Pikermian) large mammal age of southern Europe.

The accompanying table provides lists of the faunas known from early upper Miocene sites in Kenya. There are broad similarities between all three, especially in the artiodactyl and equid faunas. However, since none of the faunas is very rich in diversity, there are many gaps which may be filled, as collecting proceeds in the future. It is hoped that future collections will not only provide a more refined sense of the biostratigraphy of the deposits, but will also enhance our understanding of the palaeoenvironments which we tentatively think may have been woodland to savannah.

Comparison of the early upper Miocene (10.5 – 7.5 my) faunas of Kenya

<table>
<thead>
<tr>
<th>Taxon</th>
<th>Samburu Hills</th>
<th>Nakali</th>
<th>Ngerngerowa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hominoidea gen. nov.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Colobinae gen. nov.</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Paraphiomys/Kanisamys sp.</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Mustelidae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percrocuta sp.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ictitherium sp.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hyperhyaena leakeyi</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prodeinootherium/Deinootherium sp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tetralophodon sp.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Choerolophodon/Anancus sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hipparion primigenium/africanum</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hipparion sitifense</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chalicotheriidae</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brachyotherium sp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kenyatherium bishopi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhinocerotidae gen. et sp. indet.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Nyanzachoerus sp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Kenyapotamus sp./coryndoni</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Tragulidae</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palaeotragus sp.</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>?Samotherium sp./large giraffid</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Miotragocerus sp.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pachytragus cf. solignaci</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palaeoeras sp.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gazella sp.</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neotragini</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sivoreas eremita</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>?Hippotragini/?Reduncini</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>?Antidorcas sp.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Bovidae gen. et sp. indet.</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Number of Taxa

| | 21 | 14 | 11 |

Late Miocene large mammal fauna
REFERENCES

Explanation of Plate 1

Percrocuta sp.
Fig. 1 Buccal view of the mandible (KNM-SH 12408) x 1
Fig. 2 Occlusal view of M₁ (KNM-SH 12408) x 1

Ictitherium sp.
Fig. 3 Buccal view of the mandible (KNM-SH 12406) x 1
Fig. 4 Occlusal view of the mandible (KNM-SH 12406) x 1

Hyænidae gen. et sp. indet.
Fig. 5 Buccal view of the mandible (KNM-SH 12407) x 1
Fig. 6 Mesial view of the mandible (KNM-SH 12407) x 1
Late Miocene large mammal fauna
Explanation of Plate 2

Tetralophodon sp.

Fig. 1 Occlusal view of the left M² (KNM-SH 12307-A) x 1/3
Fig. 2 Occlusal view of the right M² (KNM-SH 12307-B) x 1/3
Fig. 3 Buccal view of the left M² (KNM-SH 12307-A) x 1/3
Fig. 4 Buccal view of the right M² (KNM-SH 12307-B) x 1/3
Fig. 5 Occlusal view of the left M¹ (KNM-SH 12308) x 1/3
Fig. 6 Occlusal view of the right M¹ (KNM-SH 12309) x 1/3
Fig. 7 Buccal view of the left M¹ (KNM-SH 12308) x 1/3
Fig. 8 Buccal view of the right M¹ (KNM-SH 12309) x 1/3
Late Miocene large mammal fauna
Explanation of Plate 3

Tetraphodon sp.

Fig. 1 Occlusal view of the left P^4^ (KNM-SH 12310) x 3

Fig. 2 Occlusal view of the right P^4^ (KNM-SH 12311) x 3

Fig. 3 Buccal view of the left P^4^ (KNM-SH 12310) x 3

Fig. 4 Buccal view of the right P^4^ (KNM-SH 12311) x 3

Fig. 5 Occlusal view of the right P^3^ (KNM-SH 12312) x 1

Fig. 6 Buccal view of the right P^3^ (KNM-SH 12312) x 1

Fig. 7 Occlusal view of the right P^2^ (KNM-SH 12313) x 1

Fig. 8 Buccal view of the right P^2^ (KNM-SH 12313) x 1
Late Miocene large mammal fauna
Explanation of Plate 4

Tetralophodon sp.

Fig. 1 Occlusal view of the left M₂ (KNM-SH 12373) × 1/3

Fig. 2 Buccal view of the left M₂ (KNM-SH 12373) × 1/5

Fig. 3 Lingual view of the left M₂ (KNM-SH 12373) × 1/5

Fig. 4 Occlusal view of the right M₂ (KNM-SH 12380) × 1/3

Fig. 5 Buccal view of the right M₂ (KNM-SH 12380) × 1/3
Late Miocene large mammal fauna
Explanation of Plate 5

Prodeinotherium sp.

Fig. 1 Occlusal view of the left M₁ – M₂ (KNM-SH 12304) x 1/2
Fig. 2 Buccal view of the left M₁ – M₂ (KNM-SH 12304) x 1/2

Hipparion primigenium (von Meyer), 1829

Fig. 3 Occlusal view of the right P₄ (KNM-SH 12204) x 1
Fig. 4 Occlusal view of the left P³ or ⁴ (KNM-SH 12245) x 1
Fig. 5 Occlusal view of the left P₄ (KNM-SH 12271) x 1
Fig. 6 Occlusal view of the left P³ or ⁴ (KNM-SH 12205) x 1
Fig. 7 Occlusal view of the right P³ (KNM-SH 12255) x 1
Fig. 8 Occlusal view of the right P₄ (KNM-SH 12257) x 1
Fig. 9 Occlusal view of the left P³ or ⁴ (KNM-SH 12258) x 1
Fig. 10 Occlusal view of the left M₂ (KNM-SH 12266) x 1
Fig. 11 Occlusal view of the left M₁ (KNM-SH 12252) x 1
Fig. 12 Occlusal view of the left M₂ (KNM-SH 12254) x 1
Fig. 13 Occlusal view of the left M₁ (KNM-SH 12261) x 1
Fig. 14 Occlusal view of the left P₃ (KNM-SH 12249) x 1
Fig. 15 Occlusal view of the left M₃ (KNM-SH 12260) x 1
Late Miocene large mammal fauna
Explanation of Plate 6

Hipparion primigenium (von Meyer), 1829

Fig. 1 Occlusal view of the right P2 and P3 (KNM-SH 12269) x 1
Fig. 2 Occlusal view of the right P2 (KNM-SH 12201) x 1
Fig. 3 Dorsal view of the left talus (KNM-SH 12278) x 2/3
Fig. 4 Proximal view of the right 3rd metacarpal (KNM-SH 12272) x 1/3

Hipparion sitifense Pomel, 1897

Fig. 5 Occlusal view of the right P3 or 4 (KNM-SH 12790) x 1
Fig. 6 Occlusal view of the right M1 or 2 (KNM-SH 12302) x 1
Fig. 7 Occlusal view of the left M3 (KNM-SH 12287) x 1
Fig. 8 Occlusal view of the right M2 (KNM-SH 12283) x 1
Fig. 9 Occlusal view of the right M1 (KNM-SH 12203) x 1
Fig. 10 Lateral view of the right calcaneum (KNM-SH 12279) x 2/3
Fig. 11 Dorsal view of the left talus (KNM-SH 12280) x 2/3
Fig. 12 Proximal view of the right 3rd metacarpal (KNM-SH 12288) x 1/3
Fig. 13 Proximal view of the 3rd basal phalanx (KNM-SH 12299) x 2/3
Late Miocene large mammal fauna

Plate 6
Explanation of Plate 7

Ancylotherium sp.

Fig. 1 Proximal view of the basal phalanx (KNM-SH 12138) x 1/2

Brachypotherium sp.

Fig. 2 Occlusal view of the left M₂ (KNM-SH 12143) x 1
Fig. 3 Buccal view of the left M₂ (KNM-SH 12143) x 1
Fig. 4 Occlusal view of the left P₃ (KNM-SH 12146) x 1
Fig. 5 Buccal view of the left P₃ (KNM-SH 12146) x 1

Rhinocerotidae gen. et sp. indet.

Fig. 6 Mesial view of the mandible (KNM-SH 12174-A) x 1/3
Fig. 7 Occlusal view of the mandible (KNM-SH 12174-A) x 1/3
Late Miocene large mammal fauna
Explanation of Plate 8

Rhinocerotidae gen. et sp. indet.

Fig. 1 Lateral view of the fragment of the lower molar (KNM-SH 12142)

Nyanzachoerus sp.

Fig. 2 Occlusal view of the left M^2 (KNM-SH 12418) \times 1
Fig. 3 Buccal view of the left M^2 (KNM-SH 12418) \times 1
Fig. 4 Occlusal view of the right P^4 (KNM-SH 12419) \times 1
Fig. 5 Buccal view of the right P^4 (KNM-SH 12419) \times

Kenyapotamus sp.

Fig. 6 Lateral view of the tusk (KNM-SH 12430) \times 1
Fig. 7 Dorsal view of the left talus (KNM-SH 12422) \times 1

Palaeotragus sp.

Fig. 8 Lingual view of the fragment of the left mandible with M_3 (KNM-SH 12229) \times 1
Fig. 9 Occlusal view of the left M_3 (KNM-SH 12229) \times 1
Fig. 10 Occlusal view of the left P_3 (KNM-SH 12232) \times 1
Fig. 11 Occlusal view of the right P_4 (KNM-SH 12233) \times 1
Explanation of Plate 9

Giraffidae gen. et sp. indet. small-type
(\textit{?\ Palaeotragus} sp.)

\textbf{Fig. 1} Dorsal view of the left talus (KNM-SH 12215) $\times 1/2$

Giraffidae gen. et sp. indet. large-type
(\textit{?\ Samotherium} sp.)

\textbf{Fig. 2} Dorsal view of the right talus (KNM-SH 12166) $\times 1/2$
\textbf{Fig. 3} Anterior view of the right metatarsal (KNM-SH 12172) $\times 1/5$

\textit{Pachytragus} cf. \textit{solignaci} Robinson, 1972

\textbf{Fig. 4} Lateral view of the horncore (KNM-SH 12315) $\times 1/2$

\textit{Palaeoeras} sp.

\textbf{Fig. 5} Lateral view of the horncore (KNM-SH 12328) $\times 1/2$

\textit{Gazella} sp.

\textbf{Fig. 6} Lateral view of the horncore (KNM-SH 12317) $\times 1/2$
\textbf{Fig. 7} Occlusal view of the fragment of the right mandible with M_3 (KNM-SH 12336) $\times 1$
\textbf{Fig. 8} Lingual view of the fragment of the right mandible with M_3 (KNM-SH 12336) $\times 1$
\textbf{Fig. 9} Dorsal view of the right talus (KNM-SH 12368) $\times 2$

\textit{Miotragocerus} sp.

\textbf{Fig. 10} Lateral view of the horncore (KNM-SH 12318) $\times 1/2$

Tragulidae gen. et sp. indet.

\textbf{Fig. 11} Dorsal view of the left talus (KNM-SH 12370) $\times 2$
Late Miocene large mammal fauna